Trichoderma-Induced Acidification Is an Early Trigger for Changes in Arabidopsis Root Growth and Determines Fungal Phytostimulation
نویسندگان
چکیده
Trichoderma spp. are common rhizosphere inhabitants widely used as biological control agents and their role as plant growth promoting fungi has been established. Although soil pH influences several fungal and plant functional traits such as growth and nutrition, little is known about its influence in rhizospheric or mutualistic interactions. The role of pH in the Trichoderma-Arabidopsis interaction was studied by determining primary root growth and lateral root formation, root meristem status and cell viability, quiescent center (QC) integrity, and auxin inducible gene expression. Primary root growth phenotypes in wild type seedlings and STOP1 mutants allowed identification of a putative root pH sensing pathway likely operating in plant-fungus recognition. Acidification by Trichoderma induced auxin redistribution within Arabidopsis columella root cap cells, causing root tip bending and growth inhibition. Root growth stoppage correlated with decreased cell division and with the loss of QC integrity and cell viability, which were reversed by buffering the medium. In addition, stop1, an Arabidopsis mutant sensitive to low pH, was oversensitive to T. atroviride primary root growth repression, providing genetic evidence that a pH root sensing mechanism reprograms root architecture during the interaction. Our results indicate that root sensing of pH mediates the interaction of Trichoderma with plants.
منابع مشابه
MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe.
Colonisation of plant roots by selected beneficial Trichoderma fungi or Pseudomonas bacteria can result in the activation of a systemic defence response that is effective against a broad spectrum of pathogens. In Arabidopsis thaliana, induced systemic resistance (ISR) triggered by the rhizobacterial strain Pseudomonas fluorescens WCS417r is regulated by a jasmonic acid- and ethylene-dependent d...
متن کاملPyocyanin, a virulence factor produced by Pseudomonas aeruginosa, alters root development through reactive oxygen species and ethylene signaling in Arabidopsis.
Pyocyanin acts as a virulence factor in Pseudomonas aeruginosa, a plant and animal pathogen. In this study, we evaluated the effect of pyocyanin on growth and development of Arabidopsis seedlings. Root inoculation with P. aeruginosa PAO1 strain inhibited primary root growth in wild-type (WT) Arabidopsis seedlings. In contrast, single lasI- and double rhlI-/lasI- mutants of P. aeruginosa defecti...
متن کاملTrichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis.
Trichoderma species belong to a class of free-living fungi beneficial to plants that are common in the rhizosphere. We investigated the role of auxin in regulating the growth and development of Arabidopsis (Arabidopsis thaliana) seedlings in response to inoculation with Trichoderma virens and Trichoderma atroviride by developing a plant-fungus interaction system. Wild-type Arabidopsis seedlings...
متن کاملPrimary root growth, tissue expression and co-expression analysis of a receptor kinase mutant in Arabidopsis
There is no functional annotation for the majority of the several hundreds of receptor-like kinases in plants. A direct way of inferring the function of these proteins is to study the phenotype that results from loss of function mutants such as T-DNA mutant lines. In this research a function (phenotype) to At2g37050 gene that encodes a receptor like kinase in Arabidopsis T-DNA line was...
متن کاملTrichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance
Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune res...
متن کامل